1. <form id='zQjEfu'></form>
        <bdo id='zQjEfu'><sup id='zQjEfu'><div id='zQjEfu'><bdo id='zQjEfu'></bdo></div></sup></bdo>

          • 当前位置:第一范文站论文理学物理学 → 论文
            文章正文

            扫描隧道显微镜在单分子科学中的应用

            文章分类:理学 - 物理学 发表时间:2014-8-2 7:43:41 作者:李 斌 侯建国

            物理学:扫描隧道显微镜在单分子科学中的应用是由第一范文站(jusantre.com)为您精心收集,希望这篇扫描隧道显微镜在单分子科学中的应用论文可以给您带来帮助,如果觉得好,请把这篇文章复制到您的博客或告诉您的朋友,以下是扫描隧道显微镜在单分子科学中的应用的正文:

              摘 要 单分子科学是一门新兴的交叉科学,在当前的科技发展中具有重要意义.扫描隧道显微镜是研究单分子的一种强有力而独特的工具.文章以作者所在研究组近年来在单分子表征、操控和原型器件设计等方面的研究工作进展为例,概述了扫描隧道显微镜在单分子科学中的应用,重点介绍了以下成果:在硫醇分子自组装单层膜上观测到C60分子的本征笼状结构,并发现了一种新颖的由C60分子取向产生的拓扑序;结合实验图像和理论模拟,确定了单个C60分子在Si(111)\|7×7表面的吸附取向;通过对金属富勒烯分子Dy@C82进行空间和能量分辨成像及相关理论模拟,确定了金属原子相对碳笼的位置及分子的取向;利用扫描隧道显微镜针尖对吸附在Au(111)表面的单个CoPc分子操作“分子手术”,以实现其吸附态和自旋态的量子调控;发现了一种由单电子隧穿和C59N分子的特殊能级结构产生的新的整流机制;发现了一种由针尖电子态和CoPc分子中Co原子轨道的空间对称性匹配产生的负微分电阻效应.
              关键词 扫描隧道显微术,单分子科学,单分子表征,自旋态调控,单分子器件
              
              1 引言
              
              近年来,单分子科学逐渐发展成为一个引人注目而前景广阔的新型交叉学科,受到了许多研究者的关注.单分子科学的研究内容是分子、原子团簇和生物大分子本身及其吸附在表面或者处于复杂凝聚相环境时的物理、化学和机械等性质[1].单分子体系的尺度最小可至纳米量级,其能级往往是分立的,在这种情况下出现的量子行为决定了体系的主要性质.人们希望通过调控其量子效应以实现某些特定功能,从而能够制备出单分子器件,如分子开关等.在分子电子学领域里,这种自下而上地搭建分子器件,并研究其性质和应用已是当前的科技热点之一. 
               1982年,IBM公司苏黎世实验室的Binnig和Rohrer等人利用量子隧穿机理研制出第一台扫描隧道显微镜(STM)[2].扫描隧道显微镜的发明使得人们首次能够实时地在原子尺度上对物体进行原位观测,进而研究其相关的物理和化学等性质.随着单分子科学的发展,人们开始尝试利用以STM为代表的各种显微技术,对单分子等纳米结构进行表征、操控和尝试原型分子器件设计.二十多年来,这个领域已经取得了许多令人瞩目的成果,并促进了物理、化学、微观机械、分子生物学和分子电子学等相关学科的发展[3].
              

              STM技术在单分子科学研究的应用中具有以下的优势和特点:STM实验能获得具有原子级分辨率的图像,可直接用于观测单分子体系电子态的空间分布,观察分子的几何构型和空间取向[4—6];STM谱学技术可以提供与单分子体系电子态有关的更丰富的信息,例如通过I-V曲线可以得到分子的输运性质[7—11],dI/dV技术(dI/dV谱和dI/dV成像[6])可以对分子的分立能级进行扫描以研究体系的能级结构,非弹性隧道谱可以用来研究分子的振动谱[12]等;利用STM针尖及其施加的外场可以进行单原子和单分子的操控,并进一步设计和构造单分子器件[8],通过各种途径(例如在针尖外加脉冲电压)还可以调节单分子体系的磁学性质[7];对单分子的表征和操控不仅可以测量单个键的强度[13],直接观测单分子态反应,甚至可能实现“选键化学”[14, 15].所以STM是目前研究单分子体系最有力而独特的技术手段.
              2 研究工作进展
              
              
              近几年来,我们研究组利用低温高分辨STM技术,结合第一性原理理论模拟,在单分子物理和化学的研究中取得了一定的进展.在单分子的高分辨表征方面有:在Au表面自组装硫醇膜上C60分子本征笼状结构和新型二维取向畴的观测;单个C60分子在Si表面吸附取向的确定;金属富勒烯中金属原子在碳笼中的位置及分子取向的确定.在单分子的量子态调控方面,我们通过选键化学实现了单分子自旋态的控制.在单分子原型器件的设计和构建方面有:基于单个C59N分子的整流器;由Ni针尖与CoPc分子轨道的空间对称性匹配产生的负微分电阻效应.

              2.1 单分子的高分辨表征
              STM中的隧道电流与样品表面费米面附近的局域电子态密度紧密相关.在STM实验中,通过探测针尖和样品间隧穿电流的变化,可以得到样品表面局域电子态密度和形貌特征信息[16].借助于STM,人们已经可以对固体表面进行原子级分辨率成像.这种成像技术应用于单分子体系时,则可以提供分子在衬底上的吸附位置、相对衬底的吸附取向以及样品电子态等各种有价值的信息.我们的工作主要是围绕富勒烯分子展开,对这种三维球形分子进行高分辨STM表征具有一定的挑战性.
              2.1.1 C60分子的高分辨表征
              自从在1985年C60被发现以来,这一类富勒烯分子吸引了很多研究者的兴趣.STM由于其在固体微观成像领域的特点和优势,已经被广泛应用于富勒烯分子各方面的研究,但对于这种三维分子的高分辨成像和取向确定依然存在很多问题和困难.我们利用低温STM,在国际上首次观测到了C60分子本征的笼状结构[4].为了减弱衬底对C60分子成像的影响,实验在Au(111)衬底上的具有化学惰性的硫醇分子自组装单层膜上进行,C60分子蒸发到硫醇膜上后形成二维密堆集六角点阵结构.在室温下,每个C60分子的STM图像为一光滑的半球状,这是由于此时分子可以自由地在各个方向上旋转;随着温度的降低,C60分子开始失去部分转动自由度,到77K时,C60分子的STM图像变成圆环状或不对称的哑铃形状;由于C60与衬底之间的相互作用较弱,直到5K时C60分子的转动自由度才被完全冻结,此时可清楚看到分子的本征笼状结构.负样品偏压下C60分子二维岛的图像是由一些明暗相间的斑点组成的(图1(a)),结合理论模拟,可以发现其中亮斑对应于C60分子的CC双键,而较弱的亮斑对应于CC单键,暗斑为五元环或六元环中心位置.在5K低温下,大多数的C60分子点阵中分子只有一种取向,但我们实验中也发现了由于分子取向不同导致的二维畴结构(图1(b)).与一般晶体不同,C60分子点阵的畴界处没有位缺陷存在,C60分子中心在整个点阵中都保留了理想的平移对称性,这种新型畴界的起因机制不同于一般教科书所描述的内容.C60分子中存在从单键到双键的电荷转移,因而两个分子之间除范德瓦尔斯作用力外,还存在一个依赖于分子相对取向的库仑相互作用[17].衬底的影响远小于分子间的相互作用,所以我们观察到的这种取向畴结构反映了二维C60体系的本征性质.
              2.1.2 C60分子在Si

            [1] [2] [3]  下一页

            关于本站  |  网站帮助  |  广告合作  |  免责声明  |  友情链接  |  网站地图
            第一范文站 CopyRight © 2011-2020 www.jusantre.com All Rights reserved. 备案号:鄂ICP备12012049号 未经授权禁止复制或建立镜像 违责必究